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Abstract combining image palettes, but such a process must in-
evitably lead to degradation of image quality.

Currently, many low-cost computers can only simulta-  The alternative approach, studied in this paper, is to
neously display a palette of 256 colors. However, thisise an optimized universal palette. The advantage of a
palette is usually selectable from a very large gamut ofiniversal color palette is that multiple images can be dis-
available colors. For many applications, this limited pal-played simultaneously, since each image uses the same
ette size imposes a significant constraint on the achiepalette. Unfortunately, direct quantization using a uni-
able image quality. We propose a method for designingersal color palette generally yields much lower image
an optimized universal color palette for use withquality than an image-dependent palette. Therefore,
halftoning methods such as error diffusion. The advanhalftoning algorithms such as multilevel ditheringy
tage of a universal color palette is that it is fixed anderror diffusiori® must be used to improve the visual qual-
therefore allows multiple images to be displayed simuldity of the displayed images. These methods exploit the
taneously. To design the palette, we employ a new vedewpass nature of the human visual system to hide color
tor quantization method known as sequential scalagquantization artifacts.
guantization (SSQ) to allocate the colors in a visually A variety of approaches to universal color palette de-
uniform color space. The SSQ method achieves neasign have been previously studied. Goertzel and Thomp-
optimal allocation, but may be efficiently implementedsor? examined separable color palettes in RGB for use
using a series of lookup tables. When used with errowith error diffusion. They found that image quality was
diffusion, SSQ adds little computational overhead andmproved by distributing quantization levels along the
may be used to minimize the visual error in an opponerthree primaries based on th& component of the CIE
color coordinate system. We compare the performance*a*b* color space. However, the separable nature of
of the optimized algorithm to standard error diffusiontheir RGB structure restricts the optimality of the re-
by evaluating a visually weighted mean-squared-errosulting palette. Alternatively, Gentile, Walowit, and
measure. Our metric is based on the color difference iAllebaclt found that a nonseparable universal color pal-
CIE L*a*b*, but also accounts for the low-pass characette designed ih*u*v* coordinates gave superior per-

teristic of human contrast sensitivity. formance over one designed in RGB coordinates.
) However, because the quantizer is not separable with
1 Introduction respect td_*u*v*, quantization of each color requires a

computationally expensive search of the entire palette.

In recent years, there has been a dramatic increase in th®re recently, Venable, Stinehour, and Roetlinde-
need for moderate and low-cost equipment to displagigned an optimized universal color palette based on
digital color images. While many of the applications thatuniform separable quantization of a scaled Ct&*b*
drive this need require the highest possible quality, costolor space. However, because the display gamut is no
considerations often restrict color displays to 8-bit videdonger a cube in the*a*b* color space, straightforward
memory. This 8-bit restriction only allows the simulta- application of this method leads to wasted colors due to
neous display of 256 colors from the full gamut &f 2 gamut mismatch. Also, use of this palette in error diffu-
possible colors. The selection of this palette of colors ision requires a transformation to ttf&*b* color space.
then of critical importance. In this paper, we present a method for designing a

There are a number of approaches for amelioratingniversal color palette, which minimizes visual error and
the effects of a restricted color palette. “Palettizationallows very fast quantization. Our approach is based on
techniques work by choosing a palette that best reprarector quantization (VQ) methods in a uniform color
sents a particular image.This method yields high-qual- space CIB *a*b*, but it employs a recently developed
ity results, but does not allow for the simultaneousvQ technique called sequential scalar quantization
display of multiple images. This is because the palettéSSQ)**?The SSQ method uses a structured codebook
required for each image will be different, so the com-to uniquely combine the performance advantages of a
bined palette for multiple images will generally be toovector quantizer with the speed of a separable scalar
large. Iverson and Riskirhave proposed a method for quantizer. In practice, the quantization of a pixel into an
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SSQ palette may be implemented by using a sequencelors), which minimize some distance to the expected
of three lookup tables; thus, a complete search througinput values. We assume that the input color is specified
the color palette can be avoided. in terms of the visually uniform color spaded,b) (we
To improve the subjective quality of the quantizedwill suppress the asterisk superscripts for notational sim-
image, we apply the optimized color palette in conjuncplicity). This coordinate system was specified by CIE as
tion with a visually optimized error diffusion technique
described in Ref. 13. Generally, error diffusion distrib- L =116a(Y/Y,) - 16
utes errors at higher spatial frequencies and thereby re- _
duces human visual sensitivity to those errors. In a = 500f(X/X,) —1(Y/Y,)] 1)
addition, optimized error diffusion exploits the differ- b = 200f(Y/Y,) —f(Z/Z.)],
ence in modulation transfer functions for luminance andvhere
chrominance components of color, and thus further re-
duces the perceived error of the displayed images. (00 3 if  0.008856< x<1
Furthermore, we show how our optimized color pal- X)= . ;
ette may be efficiently combined with color error diffu- %7'787“(16/116) If 0= x<0.008856

sion. -TO prod_uce accurate color ma';ches, the er_ro(rxl Y, Zare the standard color coordinates for a 2-deg
diffusion algorithm must be performed in color coordi- : X .
observer, an&,,Y,,Z, specify the white point.

o P oy acxpg.The Lab coariae system was designed so that a
P y just-noticeable difference in color corresponds to an ap-

used in the error diffusion filter. To eliminate the need . . . b
for computationally expensive transformations, we in_prOX|mater constant Euclidean distance. However, this

troduce a new linear color coordinate system Ca”e(?pproximate uniformity otab only holds at low spatial

. : ysi requencies because the design was based on large color
Y,c.c. M Because this new coordinate system is Carefu'%atches At higher spatial frequencies, the relative sen-
chosen to align with the*a*b* system, it preserves the : 9 P d !

structure of the SSQ palette. Hence, error diffusion anamvIty to the luminance o component of color is much

SSQ quantization may be performed in the same coord Jreater and théab color space becomes nonuniform.

. o his is particularly problematic when evaluating the
?Q}gnsg?tgrtr:él;g?é?nt%t?g?tlgggng the additional Compu('quality of halftoning algorithms such as error diffusion,
Finally, we investigate a v.isually weighted quality because artifacts generally occur at high spatial frequen-

. .~ cies. To compensate for this effect, Venable, Stinehour,
metric to evaluate the performance of our halftonlnq%

(2

methods. Commonly,he qualfy o a math between g ROSLT0 apoled 8 wehing facwr Lo el
color patches of sufficiently large size is assessed b P ' ' q

computing the color difference in the CLEa*b* color Wf”tlhk;eedlstance between the two colga,b, andL.a;b,

space. However, spatial frequency response must also
be incorporated to account for the reduced visual sensi-
tivity to the high-frequency quantization noise. To ac-

count for both of these effects, our metric is calculate

by passing the original and halftoned images through %/herew Is an experimentally determined constant.

e A = A major disadvantage of conventional unstructured
_spa}ual f||t_er approximating t_he human contrast _sen_smv—VQ is its computational complexity. Moreover, quanti-
ity in luminance and chrominance. These spatial filters . . .

zation using an unstructured palette requires a full search

are appl_:_e;]d iPI COIOJ c_oordlinates,hwhich ar(? Iinezijr in i?]'hrough theN codebook entries. Recently, tree-structured
tensity. The filtered signals are then transformed to t ) P N
: ; ! Q methods have been employed in color quantization
*ak*h*
\é'Osrl:]glllj{eléni':]oggcﬁpfocrﬁpin%mand the error energy is applications to reduce computatidti:*’However, these
We aoblv our optimized élette and error diffusionmethOds still require log\ operations per input color,
ve apply OP P ; -which is excessive in many applications.
algorithm to a variety of color test images. For compari-
son, we also test separable RGB palettes and convep- :
S ; ' ! L .1 Overview of SSQ
tional Floyd-Steinberg error diffusionBoth subjective : .
evaluation and our proposed quality metric indicate th:’;}&V SSQ is a VQ method that imposes structure on the

D=w|L -L,P+]a,—a, P+ |b —b, (3)

. : . color palette to minimize computatid#t? The SSQ
the new method produces substantial and consistent i orks by performing scalar quantization successively on

provement in image quality. ach component of an input vector. Figure 1 illustrates

. In Sec. 2 we descrlbe_the sequential color p_alettgne method for the two-dimensional input vectoraj.
esign. In Sec. 3 we combine our color palette with erz

ror diffusion using the new color spa¥g,c,. Section 4 Firs_t, the scalar componehtis quantized intd\, =5
explains our visually weighted error metric, and Sec. gegions denoted by the s&sthroughS,. These regions

! . are formed by designing an optimal one-dimensional
contains experimental results. guantizer for the marginal density lof
2 Optimal Color Palette Design
PL(L) = [y Joom Pran(L,@,b)da db.
The objective of this section is to employ VQ methods
to design an optimized universal color palette. Conven-  Next, for each regiohS, a different one-dimen-
tional VQ works by selectinyl code words (in our case, sional quantizer is applied to the scaaEach of these
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guantizers is designed to be optimal for the conditionathe L component and returns an indiegorresponding

distribution of a given that(s, to the quantization regiob]S. The second LUT then
applies the appropriate scalar quantizer based on this
pa(a||- 0s) :IbDw ILES PLap(L,a,b)dL db. region§ and returns the indexj() corresponding to the

quantization regionl(a) 0S;. The third LUT quantizes

o Lo -« the componenb based orfy; and yields the quantized
Because each conditional density is likely to be dif color vectorQ[L,a, b = (qL,an,qb.

ferent, we would expect each quantizer to be different.
In addition, each quantizer will differ due to the varying
number of quantization levelg associated with each
regionS. For examplen, = 4 levels have been allocated L .
to regionS,, whereas only, = 3 levels have been allo- —® LUT 1 —L'l

cated to regiorg,. Note that the total number of levels

allocated for both. anda is given by a
o LUT 2 1§
Ny
N, = Zni. b { k
i=1 .
> LUT 3 +—

The extension of SSQ to three dimensions is straigh
forward. Each region ol(a) formed by quantizing both
components is denoted I3, For each se§, the third
scalar componerii is quantized tm;; levels and the to-
tal number of allocated colors is given by

tIfigure 2. Block diagram of sequential LUT that performs SSQ
quantization for the three-dimensional (L,a,b) input vector. The
order of quantization is L, then a, then b, and the output
codeword is Q[L,a,b].
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2.2 Color Palette Design with SSQ

To obtainp_,(L,a,b), we assume that image colors
are uniformly distributed over the gamut of the monitor.
Define the window function

o
11,
-

L ab 1, if (L,ab)isingamut
w(L,a,b) = )
(La,b) 0, if (L,ab)isout of gamut

Thenp,,(L,a,b) is given by

w(L,a,b)

p(L,a,b) = .
ILDW .[’:lEM Ib[hﬂ W(L,a, b)dL da db

For the time being, we also assume tRgh,, and
N, are known in advance. Generally, the total number of
desired quantization leveld,, is specified, and we
present a method for estimatiiig andN, in Sec. 2.2.4.
Figure 1. Two-dimensional example for SSQ. The shaded area Our method for designing the SSQ color palette is
indicates a 2-D device gamut. Bullets denote quantization levbased on asymptotic quantization the®rgnd closely
els and dotted lines show cell boundaries. In this example, parallels the method used for color quantization in Refs.
is quantized first. 4,11, and 12. One unique aspect of our problem is that
we would like to preserve the maximum gamut of the
display device. Because halftoning algorithms can pro-
Because the quantizers are different for each regioduce the average of several palette colors, the effective
S or §;, the SSQ method exploits the dependenciegamut will be the convex hull spanned by the color pal-
among scalar components. For example, combinationstte. Moreover, error diffusion assumes that the input
of L anda that fall outside the gray area of Fig. 1 are notsignal is contained in the convex hull of the available
in the device gamut and need not be quantized. We notpiantization levels and will otherwise pass accumulat-
that the order of quantization may vary, but tha,b  ing errors forward to unquantized pixels, thus driving
order shown here will prove useful later. the quantizer into saturation. Therefore, our color pal-
The principal computational advantage of SSQ istte design method will include heuristics to ensure that
that it may be implemented as a sequence of 1-D lookugolors extend to the boundaries of the device’s gamut.
table (LUT) operations. Therefore, SSQ yields the per-
formance benefits of VQ, but requires no more compu2.2.1 Luminance Quantizer
tation than conventional scalar quantization. Figure 2  First, we design the quantizer forTo preserve the
illustrates the structure of this sequential LUT for themaximum gamut, we temporarily fix the first and last
three-dimensional input_(a,b). The first LUT quantizes quantization levels to be
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sity of a given that.OS,
a, = mLin{L: p.(L) £ 0}
Gy =ML 0] Po(AL09) = [, g Pua(L2L b
. . Before we can design an optimal quantizer for each
Because the computational cost of the quantizer dei,- : ; :
L e . egionS, we must determine the optimal number of quan-
sign is not significant, we use the Lloyd-Max algorlthmtiz(i]':\tior?Ievelsn. The optimal valugfom- can be derivqed

to choose the quantization regioig ..., S, and the . , L L
quantization levels, ..., dy. In practice, we found using asymptotic quantization thedtyand is given by

the performance of the Lloyd-Max algorithm to be

strongly dependent on the initial condition. Therefore, n :intEN h B
we initialize the Lloyd-Max algorithm by choosing the ' 2 o

intermediate quantization levels according to the asymp-

totically optimal point density functiok(L), given by Where
1/3 1/3
={plLos) Ly, (pELos) e
1/3
L= {p.(L)}
| {pL(x)}de' P(LOS) is the probability thatt is quantized to the region
LM

S, and int () denotes rounding to the nearest integer.

For each regio® and the bit allocation,, the quan-
tizer fora is designed as before. The Lloyd-Max algo-
rithm is applied after fixing the first and last quantization
levels to be

More specifically, we choose the initial values fpr
.+, On-1s SO that

i:f‘ AL)dL.

N -1 F= S _

Gip= m;n{a. PLa(L =qa) # 0}
_Figure 3 illustrates a final step in which the quanti- G, = max{a: pLa(L =ga)#0},

zation levelsg, and gy, are replaced with the centroids a

of their respective quantization regions, and the Lloyd-Max algorithm is initialized using

R -1 =[2 A (a) da
n-1 J=
A, = fis, p.(L)dL. where
These values of,, ..., dy, are then used as output val- @ {pa(a“_ DS)}M
ues forL. i(@= e
fow {PaOIL DS} e
‘ Once again, as a final step, the first and last quanti-
a zation levels are relocated to the centroids of their cells

according to
U1 = f g, Pa(3L DS)da
G, = J g Pa(dl0S)da

The quantizer design fdxis similar to that used for
a. For each regiof; in the (,a) plane, we design a 1-D
guantizer for theb component. Using the conditional
densityp,[b|(L,a) O §;], we may compute the number
quantization levels for regio§; as

O i g
N =IntN; ————0
O zk:l |:1rk,l O

13

Figure 3. Quantization procedure for L and a components. Nowhere
tice that g, and g, are initially placed at the most extreme loca- 13 U3
tions, and are then moved to the centroids of their cells denoted i ={P[(L,a) DS',J']} _[bEM { pb[b|(L,a) S, ]} do.
by g and g. Quantization levels,gare lined up along;q
andP[(L,a) O §;] is the probability thatl(,a) is quan-

2.2.2 Chrominance Quantizer tized to the regiof§;.

The next step is to design the quantizer for the sca- For each regior§;, we again set the first and last
lar a. We first calculate the conditional probability den- quantization levels to their most extreme values.
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More formally, for 1 <j < n,, we define the final
Gij1= mbin{b: PLa(L =0, a=0q;,b)# 0} (L,a,b) palette colors to be

Gijn, = mk?x{b: Pp(L=0.a= i b)# 0}- ., K = (q.,q.,.q.,k)
The remaining quantization levels,, ..., 4, - are  and forj = 1 orn,, we define

again allocated using the Lloyd-Max algorithm and an ini-
tial condition based on the optimal point density function Ci.w= (@, min,gi.

1/3
{pb[b|(L,a)DS,j]} Cinke = (G MaXy, Gk,
fen{poltlL. Ds,j]}lladx' where

Ai,j (b)=

min; = min{a: PLan(L = G;ab=05) > 0}
This time we do not replace the first and last quanti- 2
zation levels, instead, we leave them at the boundary of max; = m;n{a: Pran(L =052 0= ) >0}-

the color space to preserve the maximum gamut.

At this point, we make some observations about the Finally, we expand the color map to the maximum
palette. If the gamut of the device is convex, then theange along thé axis by adding one quantization level
palette colors will fall inside the gamut. However, thefor perfect black (0,0,0) and another for perfect white
guantization levels corresponding to the minimum and100,0,0).
maximum values od will generally not be on the bound- As mentioned previously, we note that in each cell
ary of the gamut. In the next section, we will describeS; the algorithm already placed the first and last quanti-
how these colors can be moved slightly to expand theation level ob on the boundaries of the display gamut.
usable device gamut. Note that because the valugs of
andn;; must be rounded to the nearest integer, the totdl.2.4 Optimal Bit Allocation
number of allocated colors may not always be equal to A method must still be given for selecting the opti-
the desired numbers of colors. The desired number ohal values oN, andN,. If N,, N,, andN, are large num-
colors may be obtained by adding or subtracting singléers, then asymptotic quantization theory may be applied.
guantization levels according to a mean-squared-errddpecifically, ifD,, D,, andD, are the mean squared er-
criterion as described in Ref. 11. However, for our ap+or in thelL,a,b, components, respectively, then the total
plication, we simply accept a slightly smaller palette. distortion is given byD =D, + D, + D,. Furthermore,

each component distortion is approximately equal to
2.2.3 Expanding the Color Map Range ,

To maximize the displayable gamut formed by the -1 ND N7
. D, 2 a,D, 2 B.Dy = 2 Y (4)

convex hull of palette colors, we will move some of the N; N3
colors near the minimum and maximum valuea.dfig-
ure 4 illustrates how colors corresponding to the regionsrherea, B, andy are constants that depend on the prob-
S:andS, can be moved to expand the gamut. ability density of the input signat-*2If a, 3, andy are

known, then the optimal values fidf andN, are given by

N, = N1,3[(Wa)2 DUG
° Hpy
b ‘ -. : : and

2Owapd’

sl -

: : ! In practice N,, N,, andN, will not be very large, so
Sy1 T T 5 the analytical formulas fau, 3, andy will not be accu-
: i ’ rate. However, experiments have shown that, if the con-
stantsa, [, andy are properly adjusted, then Eq. (4)
: ; d holds for a range of relatively smd|. Adjusted values
of these constants may be obtained by performing an
; , ; initial quantization with arbitrarfi, and measuring the
phonmom s e : I values ofD,, D,, andD,. The estimates fom, (3, andy
| | ' may then be obtained by equating terms in Eq. (4).

S92

Si1,3

Si14

s S S 5 > 3 Application to Error Diffusion

[} 12 1,3 W4 a
In this section, we incorporate the optimized color pal-
ette into the error diffusion halftonmg method. A naive
implementation would require a transformation both to

Figure 4. Expanding the palette range by moving the outer a-
quantization levels to the edges of the display gamut.
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and from theLab coordinate system used in the palettetor and the human visual system response, and incorpo-
design. However, we show that by careful selection ofates the contrast sensitivity to both luminance and
the coordinates used for the error diffusion algorithmchrominance, and the reduced visual sensitivity to di-
the SSQ quantizer may be implemented directly withoutigonal frequencies.
any transformations. One difficulty with incorporating the optimized pal-
Figure 5 illustrates the basic error diffusion algo-ette into error diffusion is the proper choice of color co-
rithm as described by Floyd and Steinberg in Ref. 7. T@rdinates. For the perceived color of the original and
better understand how error diffusion works, we reviewhalftone images to match, the data should be processed
the frequency analysis of Ref. 3. The error diffusion alin the same coordinate system used by the human visual
gorithm works by feeding back quantization error to re-system. Experiments show that spatial frequency re-
duce the low-frequency component of the displayed errosponse of the visual system is due to the combined ef-
Let s(n) be an image indexed by the two-dimensionalfects of optical blur and the limited resolving power of
pixel locationsn = (n,, n,). Then, the equations that de- the retina-brain systedRecent studies have found that

scribe error diffusion are given by the falloff in contrast sensitivity at high spatial frequen-
cies is mainly due to optical properties of the &e-
y(n) = Q[s(n)] cause optical blurring effects are due to incoherent
averaging of energy, these effects are properly modeled
q(n) = 3(n) —y(n) by filtering in a color coordinate system that is linear in

intensity. In our application, this lowpass behavior is the
dominant effect, so we adopt a linear color coordinate
system when modeling the lowpass nature of the human
visual system. (It is interesting to note that conventional
color measurement instruments average the energy of the
eflected signal over a color patch, and therefore effec-
ively operate in a linear color coordinate system.) This
choice precludes the direct use of tiad coordinates in
the error diffusion algorithm because they are nonlinearly
related to intensity.
Figure 6(a) shows a naive solution to this problem
of mismatched coordinate systems. The input datp
is processed by the error diffusion filter in a linear coor-
s(n) +. 3) y(n) dinate system. However, because the quantizer is de-
— > signed inLab, T () transforms the colors toab before
+ - guantization and-! () converts back after quantization.
+ é We would like to eliminate these transformations because
they are computationally expensive. The inverse trans-
q(n) formationT-* (*) may be eliminated by precomputing the
transformation for the palette of output colors.

§(n) =s(n) + g(n)*q(n),

wherey(n) is the displayed imageg(n) is the quantiza-
tion error, and * denotes two-dimensional convolution.
Substituting the third equation into the second yields th
relationship for the display erre(n),

e(n) = s(n) —y(n)
=q(n) —g(n)*q(n).

G —————

Figure 5. Block diagram of the error diffusion algorithm. s{n) 4 3n) y(n)
+

O @ 70

+

Because this is a linear relationship, we may take q(o)
the frequency transform to yield

E(w) = [1 —G(w)]Q(w), (a)

whereE(w), G(w), andQ(w) denote the discrete space ..
Fourier transforms of(n), g(n), andq(n), respectively. %’(“} $SQ Y
Thus, the display error spectrum can be shaped by se- +

lecting the proper error diffusion filt&3(w). Generally, H
G(w) is chosen to be lowpass so that the transfer func-
tion 1 —G(w) is highpass. This suppresses the low-fre-
guency error for which the visual system is most G
sensitive.

We choose the error diffusion filt€$(w) to mini- (b)

optimized error diffusion approach 1 appropriate fort e 6. Block diagram of et diftusion with SSQ: (2) match-
multilevel halftoning and selec@(w) based on an over- mg.color spaces W.'th tr".’meormat'ons Tanddnd (b) elimi-
all system model. This system model includes the moni"&ting transformations in new¥,c, color space.

q{a}
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We will eliminate the forward transformatior(e) Figure 6(b) shows a block diagram of the resulting
by judiciously selecting the linear coordinate system forerror diffusion algorithm, where we assume that the in-
error diffusion. Define the coordinate systéithat we put images(n) is already transformed t9,c,,c, coordi-

cally,, c,c, nates. Note that the transformations before and after the
guantizer are eliminated and that the block diagram re-
v =116\ sembles basic error diffusion as in Fig. 2, where the
Y Y, simple RGB quantizer is replaced by a sequential LUT
Ox  yvO similar to Fig. 2 but withY,,c,,c, inputs.
C, ZSOOW‘—D ) ) ]
n O 4 Visually Weighted Error Metric
oy zd0O
c, = ZOOD _Z_% We would like to evaluate the quality of a halftoned im-

age by some reproducible, perceptually relevant crite-

rion. For large color patches, it is common to calculate

where as beforeX(, Y,, Z,) specifies the white point. Note the mean squared error,

that theY,c,c, coordinates are chosen so that they are

aligned with thel ,a,b system. In fact, one may easily AE = AL? + Aa? + Ab?,

verify that

whereAL, Aa, andAb are the differences between the

original and the reproduced color patch in the visually

uniform color spacé.ab. As mentioned previously, er-

wheref'(Y,) is the derivative of() evaluated a¥, andl ror diffusion and other halftoning techniques introduce

is the identity matrix. Furthermore,,c,,c, is approxi- mostly high-frequency noise to the quantized image.

mately an opponent color system, where variatioreg in Therefore, any useful error metric must incorporate a

correspond to changes along a red-green direction amdodel for human contrast sensitivity as a function of

variations inc, reflect changes along a blue-yellow axis. spatial frequency. Mitsa and VarkRuhave studied a va-
We show next that the SSQ structure of the optiriety of quality metrics for monochrome halftone images

mized palette is approximately preserved in the coordiand have found that the best correlation with subjective

nate systenY,c,c,. This implies that a modified SSQ tests is achieved when the frequency response is chosen

guantizer may be directly applied to the components ofo be lowpass instead of bandpass. We take a similar

§(n) in the error diffusion filter. Because the function approach, but also incorporate thab color metric to

(*) in EqQ. (2) is a monotone increasing function, quanti-account for nonlinear visual effects.

D(Yy,c,(,cz) ( Lv a, b)| white point =f (Yy)|,

zation ofL = 116(Y/Y,) — 16 may be replaced by equiva- Figure 7 shows a block diagram of our error metric.
lent quantization o¥,, First, the halftoned and the original image are trans-
formed from RGB toY,,c,,c, coordinates. Both images
QL] =QJY,]. are then passed through a set of lowpass modulation

transfer functions, which model the contrast sensitivity
The component is dependent on the value ¥f  of the human observer toward luminance and chromi-
andc,, however, the value of may be approximated by nance. The outputs of these filters are convertdcato
the quantized valu®,[Y,]. After making this replace- coordinates and the difference signals between the half-
ment, the quantization @fis equivalent to quantization tone and original are calculated. Finally, the energy in
of ¢,. More specifically, we may define the functiar=  each component of the difference signal is determined.

g(c.Y,). Then Before combining the three valuesif?, Aa?, andAb?
Q.[a] = Q.fg(c. Y.l to aAE related quantity, we examine the performance of
ol = Qa0 v our algorithm in the three componemts,b separately.
= Q.[9(c.QIY,D]
:QCX[CXIQY[Yy]]' Yy E ¥, L
Therefore, for each quantized valQdY,], the quantizer  erisin cx_[Chrominance ex s
for a may be approximately replacedyby a quantizer foiras Ty P e T
c,. We note that this approximation becomes more acct o “ "y . 2
rate asN becomes large. [® Lat E(-i"ﬁ
The third component is similar. Define the function Y, r Eyy —-ap?
b =h(c,Y,). Then L
halftoned o -
Qu[b] = Qy[h(c, )] RoR T fier TR
= Qu[h(c, QY]] g i g B
Q[ QY-

Figure 7. Block diagram of the visually weighted error met-
This implies that the quantizer formay be replaced ric: T,, T, denote the transformations from R,G,B {ecYc,
by a quantizer foc, for each quantized valu@,[Y,]. and from Y,c,c,to L,a,b.
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Note that the linear filtering operation is performed
before the transformation to theb coordinates. This
order of operations is critical, because the perceived color
will be the average of the halftoned colors in a linear
coordinate system. If the nonlinear transformation were
performed first, the model would inaccurately predict
the perceived color of the halftoned image.

The spatial filters used in luminance and chromi-
nance are based on visual model described by Sullivan,
Ray, Miller, and Pio%% and data obtained by Mulléh.
Both the luminance and the chrominance model are of
the form

- Bexpl-a(f-f) f>1,
W(f)_a f<f’

where the decay rates a and the cutffexe estimated
from Mullen’s data. For the luminance model, we deter-
mineda = 0.4385 deg/cycle arfd= 2.2610 cycles/deg,
and for the chrominance model we obtaioed 0.1761
deg/cycle and, = 0.2048 cycles/deg. Furthermorg,is

the weighted magnitude of the frequency veétoff,.f,)
where the weighting has an angular dependence as ap-
plied by Sullivarz?

( le + f22)l/2

(©)

f= ,
Figure 8. Histogram of the marginal color distribution in the
(L,a) plane, where L increases from left to right and a increases
from top to bottom. Bright areas indicate high probability and

dark regions reflect low probability.

where
s(®) = 0.15 cos(®) + 0.85,

andO is defined as
af, O
0= t L
arc anEEE

Thus, the model is also a function of the viewing
angle and decreases faster for diagonal frequencies '
account for reduced sensitivity to luminance changes it
diagonal directions.

5 Experimental Results

The marginal distributions are obtained by numerical
integration ofp_,(L,a,b) with respect t@a andb. Figure

8 shows a histogram of this color distribution in thg)
plane for a display with SMPTE RGB primaries and a
D65 white point. Bright areas correspond to high prob-
ability, while the dark regions along the boundaries of
the gamut reflect low probability. The white dots in Fig.
8 indicate the positions of the quantization levels pro+igure 9. Histogram of the marginal color distribution in the
jected into thel(,a) plane and the white lines show the (Y,.c) plane, where Yincreases from left to right and in-
boundaries between quantization cells. Note that severateases from top to bottom. Theakis is magnified by a fac-
guantization levels are shown for most of the boundaryor of 8.

guantization cells. This shows the effect of expanding

the range of the color map as described in Sec. 2.2.3.

Using a weighting factor of = 8.0 for the error metric, Figure 9 illustrates the transformation of the color
we assign 12 quantization levels to luminance, 57 levelmap and the histogram to the n¥yc,,c, coordinate sys-

to the chrominance componemtand 245 colors to the tem, where they,,c, plane is shown. Note that the se-
entire palette. Adding perfect black and perfect white tajuential structure of the color palette is maintained after
the palette increases the palette size to 247 colors. the transformation.
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Figure 10 shows the range of colors in thea)
plane, which occur in the image “Picnic.” Light gray
areas indicate colors that are present in the image. The
white lines and dots again indicate the quantization cell
boundaries and the palette colors. For each quantization
region, we only show the one palette color that is closest to
the gamut boundary. Note how the colors of this image
extend almost to the edges of the projected gamut. Although
the distribution of colors in any one image is rarely uni-
form, the figure shows the variety of colors that may
occur in one image. This indicates the value of minimiz-
ing the loss in gamut when designing the color map.

We compare three algorithms: Floyd-Steinberg with
a separable palette, Floyd-Steinberg with an optimized
palette, and optimized error diffusion with an optimized
palette. We refer to this last combination as the optimized
algorithm. Because a separable RGB color palette with
linear spacings between quantization levels yields poor
results, we used a separable RGB palette with colors al-
located according to a power law with an exponent of
3.0. A similar approach was taken by Goertzel and Thomp-
son in Ref. 9. We assigned eight levels to each of the red
and green components, and four levels to the blue com-
ponent for a total of 256 colors.

Table 1 shows a measure of perceived error for a set
of five test images shown in Fig. 11. The error was mea-
sured using the procedure described in Sec. 4 and as-
sumed a normal viewing distance of 45.5 cm (17.9 in.)
Figure 10. Range of color distribution in the (L, a) plane for and a display resolution of 100 dots/in. We examined a
the image “Picnic” variety of images, including images with very saturated

Figure 11. Test images: (a) “Balloon,” (b) “Picnic,” (c) “Uchart,” (d) “Munich,” and (e) “Beach.” (Halftones obtained from
color images.)
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colors such as “Picnic,” images with more pastel colorsvith an optimized color palette consistently produced
such as “Beach” and “Balloon,” and test images such athe lowest errors.

“Uchart.” Except for thédo component in the image “Pic- Figure 12 shows the original “Balloon” image, the
nic,” the optimized algorithm achieved consistently lowerFloyd-Steinberg halftone with RGB palette, Floyd-
errors in all three components. Column 2 in Table 1Steinberg algorithm with optimized palette, and opti-
shows the improvement that can be achieved by usingized error diffusion with optimized palette. Given the
the optimized color palette while retaining the Floyd-2:1 zoom of the figures and the assumed viewing dis-
Steinberg filter coefficients. However, the best overalltance and resolution, these images are designed to be
performance was achieved when combining the optiviewed at 7.0 times their height. The range of colors in
mized color palette with optimized filter coefficients. this image and the numerical results for our error metric
These numerical results corresponded well with our subseem to be typical for the majority of images we worked
jective evaluations of image quality. Table 2 lists valuesvith. Note that the optimized algorithm breaks up con-
of AE for the three algorithms, which are obtained bytours and patterns that are typical artifacts of the Floyd-
adding the three quantities 8E2?, Aa?, Ab? for each im-  Steinberg algorithm. These effects can be most clearly
age. In this case, the optimized error diffusion togetheseen in the slowly varying colors of the different bal-

Figure 12. Comparison of 2.1 zoom of (a) original “Balloon” image, (b) Floyd-Steinberg algorithm with separable RGB palette,
(c) Floyd-Steinberg algorithm with optimized palette, and (d) optimized error diffusion with optimized palette. (Halftones ob-
tained from color images.)
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loons. Note, for example, how contouring effects in thethat this effect is our trade-off for achieving an overall
balloon on the left of the girl's face are broken up wherperformance improvement. The predominantly diagonal
using the fully optimized algorithm. orientation of the texture may be due to the angle de-
Figure 13 shows the original “Picnic” image, the pendency of the human visual model, which was used to
Floyd-Steinberg halftone with RGB palette, Floyd- design our optimized error diffusion filter.
Steinberg algorithm with optimized palette, and opti-
mized error diffusion with optimized palette. Similar
effects may be seen in this image. For instance, examin-
ing the texture in the tree on the right side of the imageWe examined the design of a universal color palette in a
it can be seen that the optimized algorithm renders dedsually uniform color space. The palette is generated
tails with more accuracy than the old method. Howeverysing a new vector quantization method known as SSQ.
the improvement in this image was the least noticeabl&he SSQ approach reduces computation by allowing VQ
and the numerical results represent our worse-case pdp be performed with a series of scalar quantizers. The
formance. resulting color palette was then combined with a previ-
ously developed multilevel error diffusion algorithm to
give the best overall result.

6 Conclusion

Table 1. Estimates of perceived error of halftone images in
L,a,b. The optimized error diffusion algorithm with an
optimized universal palette produced the lowest errors in

To evaluate the quality of the displayed images, we
developed a visually weighted error metric that uses mod-
els for human contrast sensitivity toward luminance and

chrominance together with a nonlinear transformation
of the color space. The measurement of this error metric
opt.ED for a variety of images substantiated our subjective con-

almost every case.

Image: Floyd-Steinberg Floyd-Steinberg

RGB Palette Opt. Palette Opt. Palette clusions that the optimized palette improved the dis-
played image quality.
Balloon AL? 0.3176 0.1239 0.0872
Aa? 0.1203 0.0772 0.0510 Acknowledgments
Ab? 0.7894 0.3310 0.2940
Beach AL? 0.3584 0.1191 0.0740  We would like to thank the NEC Corporation for their
Aa? 0.1064 0.0238 0.0116 support of this work. Furthermore, we wish to thank
Ab? 0.3889 0.0524 0.0357 Kodak and Reiner Eschbach from Xerox Corporation for
Munich AL? 0.3190 0.1356 0.0968 providing some of our test images.
ha? 0.0662 0.0428 0.0191
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