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Abstract

Currently, many low-cost computers can only simu
neously display a palette of 256 colors. However, 
palette is usually selectable from a very large gamu
available colors. For many applications, this limited p
ette size imposes a significant constraint on the ach
able image quality. We propose a method for design
an optimized universal color palette for use w
halftoning methods such as error diffusion. The adv
tage of a universal color palette is that it is fixed a
therefore allows multiple images to be displayed sim
taneously. To design the palette, we employ a new 
tor quantization method known as sequential sc
quantization (SSQ) to allocate the colors in a visua
uniform color space. The SSQ method achieves n
optimal allocation, but may be efficiently implement
using a series of lookup tables. When used with e
diffusion, SSQ adds little computational overhead a
may be used to minimize the visual error in an oppon
color coordinate system. We compare the performa
of the optimized algorithm to standard error diffusi
by evaluating a visually weighted mean-squared-e
measure. Our metric is based on the color differenc
CIE L*a*b* , but also accounts for the low-pass char
teristic of human contrast sensitivity.

1 Introduction

In recent years, there has been a dramatic increase 
need for moderate and low-cost equipment to disp
digital color images. While many of the applications t
drive this need require the highest possible quality, 
considerations often restrict color displays to 8-bit vid
memory. This 8-bit restriction only allows the simult
neous display of 256 colors from the full gamut of 24

possible colors. The selection of this palette of color
then of critical importance.

There are a number of approaches for ameliora
the effects of a restricted color palette. “Palettizatio
techniques work by choosing a palette that best re
sents a particular image.1–4 This method yields high-qua
ity results, but does not allow for the simultaneo
display of multiple images. This is because the pal
required for each image will be different, so the co
bined palette for multiple images will generally be t
large. Iverson and Riskin5 have proposed a method f
—Recent Progress in Digital Halftoning II
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combining image palettes, but such a process mus
evitably lead to degradation of image quality.

The alternative approach, studied in this paper, i
use an optimized universal palette. The advantage 
universal color palette is that multiple images can be 
played simultaneously, since each image uses the s
palette. Unfortunately, direct quantization using a u
versal color palette generally yields much lower ima
quality than an image-dependent palette. Therefo
halftoning algorithms such as multilevel dithering6 or
error diffusion7,8 must be used to improve the visual qu
ity of the displayed images. These methods exploit 
lowpass nature of the human visual system to hide c
quantization artifacts.

A variety of approaches to universal color palette 
sign have been previously studied. Goertzel and Tho
son9 examined separable color palettes in RGB for 
with error diffusion. They found that image quality w
improved by distributing quantization levels along t
three primaries based on the L* component of the CIE
L*a*b*  color space. However, the separable nature
their RGB structure restricts the optimality of the r
sulting palette. Alternatively, Gentile, Walowit, an
Allebach6 found that a nonseparable universal color p
ette designed in L*u*v*  coordinates gave superior pe
formance over one designed in RGB coordinat
However, because the quantizer is not separable 
respect to L*u*v* , quantization of each color requires
computationally expensive search of the entire pale
More recently, Venable, Stinehour, and Roetling10 de-
signed an optimized universal color palette based
uniform separable quantization of a scaled CIE L*a*b*
color space. However, because the display gamut i
longer a cube in the L*a*b*  color space, straightforwar
application of this method leads to wasted colors du
gamut mismatch. Also, use of this palette in error dif
sion requires a transformation to the L*a*b*  color space.

In this paper, we present a method for designin
universal color palette, which minimizes visual error a
allows very fast quantization. Our approach is based
vector quantization (VQ) methods in a uniform col
space CIE L*a*b*,  but it employs a recently develope
VQ technique called sequential scalar quantizat
(SSQ).4,11,12 The SSQ method uses a structured codeb
to uniquely combine the performance advantages 
vector quantizer with the speed of a separable sc
quantizer. In practice, the quantization of a pixel into



en
u

e
nc
e

ib
y 
 I
r-
n

 r

a
u-
rr
i
r
b
e
in
le
ul
e
an
r
p

ty
in
tw
 

a
n
c
te
h
tiv
e
in
th
s

on
r
v

h
t i

et
 e

. 

d
e
,

ted
ified

im-
 as

deg

at a
 ap-
this
l
 color
sen-
h
m.
he
n,

uen-
our,

are

red
ti-
arch
red
tion

r,

 the

 on
tes

nal

-

SSQ palette may be implemented by using a sequ
of three lookup tables; thus, a complete search thro
the color palette can be avoided.

To improve the subjective quality of the quantiz
image, we apply the optimized color palette in conju
tion with a visually optimized error diffusion techniqu
described in Ref. 13. Generally, error diffusion distr
utes errors at higher spatial frequencies and thereb
duces human visual sensitivity to those errors.
addition, optimized error diffusion exploits the diffe
ence in modulation transfer functions for luminance a
chrominance components of color, and thus further
duces the perceived error of the displayed images.

Furthermore, we show how our optimized color p
ette may be efficiently combined with color error diff
sion. To produce accurate color matches, the e
diffusion algorithm must be performed in color coord
nates, which are linearly related to intensity. Therefo
the L*a*b*  coordinates of the color palette may not 
used in the error diffusion filter. To eliminate the ne
for computationally expensive transformations, we 
troduce a new linear color coordinate system cal
Yycxcz.14 Because this new coordinate system is caref
chosen to align with the L*a*b*  system, it preserves th
structure of the SSQ palette. Hence, error diffusion 
SSQ quantization may be performed in the same coo
nate system, thereby eliminating the additional com
tation of a transformation to Lab.

Finally, we investigate a visually weighted quali
metric to evaluate the performance of our halfton
methods. Commonly, the quality of a match between 
color patches of sufficiently large size is assessed
computing the color difference in the CIE L*a*b*  color
space. However, spatial frequency response must 
be incorporated to account for the reduced visual se
tivity to the high-frequency quantization noise. To a
count for both of these effects, our metric is calcula
by passing the original and halftoned images throug
spatial filter approximating the human contrast sensi
ity in luminance and chrominance. These spatial filt
are applied in color coordinates, which are linear in 
tensity. The filtered signals are then transformed to 
visually uniform space L*a*b*  and the error energy i
computed in each component.

We apply our optimized palette and error diffusi
algorithm to a variety of color test images. For compa
son, we also test separable RGB palettes and con
tional Floyd-Steinberg error diffusion.7 Both subjective
evaluation and our proposed quality metric indicate t
the new method produces substantial and consisten
provement in image quality.

In Sec. 2 we describe the sequential color pal
design. In Sec. 3 we combine our color palette with
ror diffusion using the new color space Yycxcz. Section 4
explains our visually weighted error metric, and Sec
contains experimental results.

2 Optimal Color Palette Design

The objective of this section is to employ VQ metho
to design an optimized universal color palette. Conv
tional VQ works by selecting N code words (in our case
ce
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colors), which minimize some distance to the expec
input values. We assume that the input color is spec
in terms of the visually uniform color space (L,a,b) (we
will suppress the asterisk superscripts for notational s
plicity). This coordinate system was specified by CIE

L = 116f(Y/Yn) – 16

a = 500[f(X/Xn) – f(Y/Yn)] (1)

b = 200[f(Y/Yn) – f(Z/Zn)],
where

f x
x x

x x
( )

.

. ( / ) .
,

/

=
< ≤

+ ≤ ≤




1 3 0 008856 1

7 787 16 116 0 0 008856

if

if
(2)

(X, Y, Z are the standard color coordinates for a 2-
observer, and Xn,Yn,Zn specify the white point.

The Lab coordinate system was designed so th
just-noticeable difference in color corresponds to an
proximately constant Euclidean distance. However, 
approximate uniformity of Lab only holds at low spatia
frequencies because the design was based on large
patches. At higher spatial frequencies, the relative 
sitivity to the luminance or L component of color is muc
greater and the Lab color space becomes nonunifor
This is particularly problematic when evaluating t
quality of halftoning algorithms such as error diffusio
because artifacts generally occur at high spatial freq
cies. To compensate for this effect, Venable, Stineh
and Roetling applied a weighting factor w > 1 to the lu-
minance component of the distortion. Thus, the squ
of the distance between the two colors L1a1b1 and L2a2b2

will be

    D = w | L1 – L2 |2 + | a1 – a2 |2 + | b1 – b2 |2, (3)

where w is an experimentally determined constant.
A major disadvantage of conventional unstructu

VQ is its computational complexity. Moreover, quan
zation using an unstructured palette requires a full se
through the N codebook entries. Recently, tree-structu
VQ methods have been employed in color quantiza
applications to reduce computation.3,15–17 However, these
methods still require log N operations per input colo
which is excessive in many applications.

2.1 Overview of SSQ
SSQ is a VQ method that imposes structure on

color palette to minimize computation.4,11,12 The SSQ
works by performing scalar quantization successively
each component of an input vector. Figure 1 illustra
the method for the two-dimensional input vector (L,a).
First, the scalar component L is quantized into N1 = 5
regions denoted by the sets S1 through S5. These regions
are formed by designing an optimal one-dimensio
quantizer for the marginal density of L,

  
p L p L a b a bL b Laba

( ) ( , , ) .=
∈∈ ∫∫ MM

d d

Next, for each region L∈Si, a different one-dimen
sional quantizer is applied to the scalar a. Each of these
Chapter III—Algorithms—93
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quantizers is designed to be optimal for the conditio
distribution of a given that L∈Si,

  
p a L S p L a b L ba i L S Labb i

( ) ( , , ) .∈ =
∈∈ ∫∫ d d

M

Because each conditional density is likely to be d
ferent, we would expect each quantizer to be differ
In addition, each quantizer will differ due to the varyi
number of quantization levels ni associated with eac
region Si. For example, n4 = 4 levels have been allocate
to region S4, whereas only n5 = 3 levels have been allo
cated to region S5. Note that the total number of leve
allocated for both L and a is given by

N ni
i

N

2
1

1

=
=
∑ .

The extension of SSQ to three dimensions is strai
forward. Each region of (L,a) formed by quantizing both
components is denoted by Si,j, For each set Si,j, the third
scalar component b is quantized to ni,j levels and the to
tal number of allocated colors is given by

N n
j

n

i j
i

N i

3
11

2

=
==
∑∑ , .

Figure 1. Two-dimensional example for SSQ. The shaded 
indicates a 2-D device gamut. Bullets denote quantization
els and dotted lines show cell boundaries. In this examp
is quantized first.

Because the quantizers are different for each re
Si or Si,j, the SSQ method exploits the dependenc
among scalar components. For example, combinat
of L and a that fall outside the gray area of Fig. 1 are 
in the device gamut and need not be quantized. We 
that the order of quantization may vary, but the L,a,b
order shown here will prove useful later.

The principal computational advantage of SSQ
that it may be implemented as a sequence of 1-D loo
table (LUT) operations. Therefore, SSQ yields the p
formance benefits of VQ, but requires no more com
tation than conventional scalar quantization. Figur
illustrates the structure of this sequential LUT for 
three-dimensional input (L,a,b). The first LUT quantizes
94—Recent Progress in Digital Halftoning II
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the L component and returns an index i corresponding
to the quantization region L∈Si. The second LUT then
applies the appropriate scalar quantizer based on
region Si and returns the index (i,j ) corresponding to the
quantization region (L,a) ∈SI,j. The third LUT quantizes
the component b based on Si,j and yields the quantize
color vector Q[L,a,b] = (qL,qa,qb).

Figure 2. Block diagram of sequential LUT that performs S
quantization for the three-dimensional (L,a,b) input vector. T
order of quantization is L, then a, then b, and the out
codeword is Q[L,a,b].

2.2 Color Palette Design with SSQ
To obtain pLab(L,a,b), we assume that image colo

are uniformly distributed over the gamut of the monit
Define the window function

w L a b
L a b

L a b
( , , )

, ( , , )

, ( , , )
.=

1

0

if is in gamut

if is out of gamut

Then pLab(L,a,b) is given by

  

p L a b
w L a b

w L a b L a b
baL

( , , )
( , , )

( , , )
.=

∈∈∈ ∫∫∫ MMM
d d d

For the time being, we also assume that N1,N2, and
N3 are known in advance. Generally, the total numbe
desired quantization levels, N3, is specified, and we
present a method for estimating N1 and N2 in Sec. 2.2.4.

Our method for designing the SSQ color palette
based on asymptotic quantization theory,18 and closely
parallels the method used for color quantization in R
4, 11, and 12. One unique aspect of our problem is 
we would like to preserve the maximum gamut of t
display device. Because halftoning algorithms can p
duce the average of several palette colors, the effec
gamut will be the convex hull spanned by the color p
ette. Moreover, error diffusion assumes that the in
signal is contained in the convex hull of the availa
quantization levels and will otherwise pass accumu
ing errors forward to unquantized pixels, thus drivi
the quantizer into saturation. Therefore, our color p
ette design method will include heuristics to ensure 
colors extend to the boundaries of the device’s gam

2.2.1 Luminance Quantizer
First, we design the quantizer for L. To preserve the

maximum gamut, we temporarily fix the first and la
quantization levels to be
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q L p L

q L p L

L
L

N
L

L

1 0

0
1

= ≠{ }
= ≠{ }

Because the computational cost of the quantizer
sign is not significant, we use the Lloyd-Max algorith
to choose the quantization regions S1, …, SN1

 and the
quantization levels q2, …, qN1 1− .  In practice, we found
the performance of the Lloyd-Max algorithm to 
strongly dependent on the initial condition. Therefo
we initialize the Lloyd-Max algorithm by choosing th
intermediate quantization levels according to the asy
totically optimal point density function λ(L), given by

  

λ( )
( )

( )
.

/

/L
p L

p x x

L

L L

=
{ }

{ }∈∫

1 3

1 3

M
d

More specifically, we choose the initial values for q2,
…, qN1 1− ,  so that

i

N
L L

qi−
−

=
−∞∫

1

11

λ( ) .d

Figure 3 illustrates a final step in which the quan
zation levels ̃q1  and q̃N1

 are replaced with the centroid
of their respective quantization regions,

q p L L

q p L L

LL S

N LL SN

1
1

1
1

=

=

∈

∈

∫

∫

( )

( ) .

d

d

These values of q1, …, qN1
 are then used as output va

ues for L.

Figure 3. Quantization procedure for L and a components. 
tice that q̃1  and q̃5  are initially placed at the most extreme loc
tions, and are then moved to the centroids of their cells den
by q1 and q5. Quantization levels q1,j are lined up along qi.

2.2.2 Chrominance Quantizer
The next step is to design the quantizer for the 

lar a. We first calculate the conditional probability de
e-

,

p-

-

-

ed

a-

sity of a given that L∈Si,

  
p a L S p L a b L ba i L S Labb i

( ) ( , , ) .∈ =
∈∈ ∫∫ d d

M

Before we can design an optimal quantizer for e
region Si, we must determine the optimal number of qu
tization levels ni. The optimal value for ni can be derived
using asymptotic quantization theory,11 and is given by

n N
r

r
i

i

l

N
l

=










=
−∑

int ,2

0

11

where

r P L S p a L S ai i a M a i= ∈( ){ } ∈{ }∈∫
1 3 1 3/ /

( ) ,d

P(L∈Si) is the probability that L is quantized to the regio
Si, and int (•) denotes rounding to the nearest integer.

For each region Si and the bit allocation ni, the quan-
tizer for a is designed as before. The Lloyd-Max alg
rithm is applied after fixing the first and last quantizati
levels to be

˜ min : ( )

˜ max : ( ) ,

,

,

q a p L q a

q a p L q a

i
a

La i

i n
a

La ii

1 0

0

= = ≠{ }
= = ≠{ }

and the Lloyd-Max algorithm is initialized using

j

n
a a

i

q

i
i j−

−
=

−∞∫
1

1
, ( ) ,λ d

where

  

λi
a i

x a i

a
p a L S

p x L S x
( )

( )

( )
.

/

/=
∈{ }

∈{ }∈∫

1 3

1 3

M
d

Once again, as a final step, the first and last qua
zation levels are relocated to the centroids of their c
according to

q p a L S a

q p a L S a

i a iL S

i N a iL S

i

i ni

,

,

( )

( ) .

,

,

1
1

1

= ∈

= ∈

∈

∈

∫

∫

d

d

The quantizer design for b is similar to that used fo
a. For each region Si,j in the (L,a) plane, we design a 1-D
quantizer for the b component. Using the condition
density pb[b|(L,a) ∈ Si,j], we may compute the numbe
quantization levels for region Si.j as

n N
r

r
i j

i j

k ll

n

k

N k
,

,

,

int ,=










== ∑∑3

11
1

where

  
r P L a S p b L a S bi j i j b i jb, ,

/

,

/
[( , ) ] [ ( , ) ] .= ∈{ } ∈{ }∈∫

1 3 1 3
d

M

and P[(L,a) ∈ Si.j] is the probability that (L,a) is quan-
tized to the region Si,j.

For each region Si.j, we again set the first and la
quantization levels to their most extreme values.
Chapter III—Algorithms—95
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, , ,

, , ,

min : ( , , )

max : ( , , ) .
,

1 0

0

= = = ≠{ }
= = = ≠{ }

The remaining quantization levels qi,j,2, …, qi j ni j, , , −1 are
again allocated using the Lloyd-Max algorithm and an
tial condition based on the optimal point density funct

  

λi j

b i j

b i jx

b
p b L a S

p b L a S x
,

,

/

,

/( )
[ ( , ) ]

[ ( , ) ]
.=

∈{ }
∈{ }∈∫

1 3

1 3
d

M

This time we do not replace the first and last qua
zation levels, instead, we leave them at the bounda
the color space to preserve the maximum gamut.

At this point, we make some observations about
palette. If the gamut of the device is convex, then
palette colors will fall inside the gamut. However, t
quantization levels corresponding to the minimum 
maximum values of a will generally not be on the boun
ary of the gamut. In the next section, we will descr
how these colors can be moved slightly to expand
usable device gamut. Note that because the valuesni

and ni,j must be rounded to the nearest integer, the 
number of allocated colors may not always be equa
the desired numbers of colors. The desired numbe
colors may be obtained by adding or subtracting sin
quantization levels according to a mean-squared-e
criterion as described in Ref. 11. However, for our 
plication, we simply accept a slightly smaller palette

2.2.3 Expanding the Color Map Range
To maximize the displayable gamut formed by 

convex hull of palette colors, we will move some of 
colors near the minimum and maximum values of a. Fig-
ure 4 illustrates how colors corresponding to the reg
Si,1 and Si,ni can be moved to expand the gamut.

Figure 4. Expanding the palette range by moving the oute
quantization levels to the edges of the display gamut.
96—Recent Progress in Digital Halftoning II
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More formally, for 1 < j < ni, we define the final
(L,a,b) palette colors to be

Ci,j,k = (qi,qi,j,qi,j,k),

and for j = 1 or ni, we define

Ci,1, k = (qi, mini,k,qi,1,k)

Ci n ki, , ,  = (qi, maxi,k, qi n ki, , ),
where

min min : ( ; , )

max min : ( ; , ) .

, , ,

, , ,

i k
a

Lab i i k

i k
a

Lab i i n k

a p L q a b q

a p L q a b q
i

= = = >{ }
= = = >{ }

1 0

0

Finally, we expand the color map to the maximu
range along the L axis by adding one quantization lev
for perfect black (0,0,0) and another for perfect wh
(100,0,0).

As mentioned previously, we note that in each c
Si,j the algorithm already placed the first and last qua
zation level of b on the boundaries of the display gamu

2.2.4 Optimal Bit Allocation
A method must still be given for selecting the op

mal values of N1 and N2. If N1, N2, and N3 are large num-
bers, then asymptotic quantization theory may be appl
Specifically, if DL, Da, and Db are the mean squared e
ror in the L,a,b, components, respectively, then the to
distortion is given by D = DL + Da + Db. Furthermore,
each component distortion is approximately equal to

      D
N

D
N

N
D

N

NL a b≈ ≈ ≈1

1
2

1
2

2
2

2
2

3
2α β γ, , , (4)

where α, β, and γ are constants that depend on the pro
ability density of the input signal.4,11,12 If α, β, and γ are
known, then the optimal values for N1 and N2 are given by

N N
w

1 3
1 3

2 1 6

=






/
/

( )α
βγ

and

 N N
w

2 3
2 3

2

1 6

=






/
/

.
αβ

γ

In practice, N1, N2, and N3 will not be very large, so
the analytical formulas for α, β, and γ will not be accu-
rate. However, experiments have shown that, if the c
stants α,  β, and γ are properly adjusted, then Eq. (
holds for a range of relatively small Nk. Adjusted values
of these constants may be obtained by performing
initial quantization with arbitrary Ñk and measuring the
values of DL, Da, and Db. The estimates for α, β, and γ
may then be obtained by equating terms in Eq. (4).

3 Application to Error Diffusion

In this section, we incorporate the optimized color p
ette into the error diffusion halftoning method. A nai
implementation would require a transformation both
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and from the Lab coordinate system used in the pale
design. However, we show that by careful selection
the coordinates used for the error diffusion algorith
the SSQ quantizer may be implemented directly with
any transformations.

Figure 5 illustrates the basic error diffusion alg
rithm as described by Floyd and Steinberg in Ref. 7
better understand how error diffusion works, we rev
the frequency analysis of Ref. 3. The error diffusion
gorithm works by feeding back quantization error to 
duce the low-frequency component of the displayed e
Let s(n) be an image indexed by the two-dimensio
pixel locations n = (n1, n2). Then, the equations that d
scribe error diffusion are given by

y(n) = Q [˜( )]s n

q(n) = ˜( )s n  – y(n)

˜( )s n  = s(n) + g(n)* q(n),

where y(n) is the displayed image, q(n) is the quantiza-
tion error, and * denotes two-dimensional convoluti
Substituting the third equation into the second yields
relationship for the display error e(n),

e(n) = s(n) – y(n)
       = q(n) – g(n)*q(n).

Figure 5. Block diagram of the error diffusion algorithm.

Because this is a linear relationship, we may t
the frequency transform to yield

E(ω) = [1 – G(ω)]Q(ω),

where E(ω), G(ω), and Q(ω) denote the discrete spa
Fourier transforms of e(n), g(n), and q(n), respectively.
Thus, the display error spectrum can be shaped by
lecting the proper error diffusion filter G(ω). Generally,
G(ω) is chosen to be lowpass so that the transfer fu
tion 1 – G(ω) is highpass. This suppresses the low-f
quency error for which the visual system is mo
sensitive.

We choose the error diffusion filter G(ω) to mini-
mize the perceived error as described in Ref. 13. T
optimized error diffusion approach is appropriate 
multilevel halftoning and selects G(ω) based on an over
all system model. This system model includes the m
f
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tor and the human visual system response, and inc
rates the contrast sensitivity to both luminance 
chrominance, and the reduced visual sensitivity to
agonal frequencies.

One difficulty with incorporating the optimized pa
ette into error diffusion is the proper choice of color 
ordinates. For the perceived color of the original 
halftone images to match, the data should be proce
in the same coordinate system used by the human v
system. Experiments show that spatial frequency
sponse of the visual system is due to the combine
fects of optical blur and the limited resolving power
the retina-brain system.19 Recent studies have found th
the falloff in contrast sensitivity at high spatial frequ
cies is mainly due to optical properties of the eye.20 Be-
cause optical blurring effects are due to incohe
averaging of energy, these effects are properly mod
by filtering in a color coordinate system that is linea
intensity. In our application, this lowpass behavior is
dominant effect, so we adopt a linear color coordin
system when modeling the lowpass nature of the hu
visual system. (It is interesting to note that conventio
color measurement instruments average the energy 
reflected signal over a color patch, and therefore e
tively operate in a linear color coordinate system.) T
choice precludes the direct use of the Lab coordinates in
the error diffusion algorithm because they are nonline
related to intensity.

Figure 6(a) shows a naive solution to this prob
of mismatched coordinate systems. The input datas(n)
is processed by the error diffusion filter in a linear co
dinate system. However, because the quantizer is
signed in Lab, T (•) transforms the colors to Lab before
quantization and T–1 (•) converts back after quantizatio
We would like to eliminate these transformations beca
they are computationally expensive. The inverse tr
formation T–1 (•) may be eliminated by precomputing t
transformation for the palette of output colors.

Figure 6. Block diagram of error diffusion with SSQ: (a) mat
ing color spaces with transformations T and T–1 and (b) elimi-
nating transformations in new Yy,cx,cz color space.

(b)
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We will eliminate the forward transformation T(•)
by judiciously selecting the linear coordinate system
error diffusion. Define the coordinate system14 that we
call Yy, cx,cz,

Y
Y

Y

c
X

X

Y

Y

c
Y

Y

Z

Z

y
n

x
n n

z
n n

=

= −










= −










116

500

200

,

,

,

where as before (Xn, Yn, Zn) specifies the white point. Not
that the Yycxcz coordinates are chosen so that they 
aligned with the L,a,b system. In fact, one may easi
verify that

∇ =( , , ) ( , , ) ' ( ) ,Y c c yy x z
L a b f Ywhite point I

where f ′(Yy) is the derivative of f(•) evaluated at Yy and I
is the identity matrix. Furthermore, Yy,cx,cz is approxi-
mately an opponent color system, where variations icx

correspond to changes along a red-green direction
variations in cz reflect changes along a blue-yellow ax

We show next that the SSQ structure of the o
mized palette is approximately preserved in the coo
nate system Yy,cx,cz. This implies that a modified SS
quantizer may be directly applied to the component
˜( )s n  in the error diffusion filter. Because the functi
(•) in Eq. (2) is a monotone increasing function, qua
zation of L = 116f(Y/Yn) – 16 may be replaced by equiv
lent quantization of Yy,

QL[L] ≡ QY[Yy].

The component a is dependent on the value of Yy

and cx, however, the value of Yy may be approximated b
the quantized value QY[Yy]. After making this replace
ment, the quantization of a is equivalent to quantizatio
of cx. More specifically, we may define the function a =
g(cx,Yy). Then

Qa[a] = Qa[g(cx, Yy)]

          ≈ Qa[g(cx,QY[Yy])]

          = Qcx[cx,QY[Yy]].

Therefore, for each quantized value QY[Yy], the quantizer
for a may be approximately replaced by a quantizer
cx. We note that this approximation becomes more a
rate as N becomes large.

The third component is similar. Define the functi
b = h(cz,Yz). Then

Qb[b] = Qb[h(cz,Yy)]

         ≈ Qb[h(cz,QY[Yy])]

          =Qcz[cz,QY[Yy]].

This implies that the quantizer for b may be replaced
by a quantizer for cz for each quantized value QY[Yy].
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Figure 6(b) shows a block diagram of the result
error diffusion algorithm, where we assume that the
put image s(n) is already transformed to Yy,cx,cz coordi-
nates. Note that the transformations before and afte
quantizer are eliminated and that the block diagram
sembles basic error diffusion as in Fig. 2, where 
simple RGB quantizer is replaced by a sequential L
similar to Fig. 2 but with Yy,cx,cz inputs.

4 Visually Weighted Error Metric

We would like to evaluate the quality of a halftoned i
age by some reproducible, perceptually relevant cr
rion. For large color patches, it is common to calcul
the mean squared error,

∆E = ∆L2 + ∆a2 + ∆b2,

where ∆L, ∆a, and ∆b are the differences between th
original and the reproduced color patch in the visua
uniform color space Lab. As mentioned previously, er
ror diffusion and other halftoning techniques introdu
mostly high-frequency noise to the quantized ima
Therefore, any useful error metric must incorporat
model for human contrast sensitivity as a function
spatial frequency. Mitsa and Varkur21 have studied a va
riety of quality metrics for monochrome halftone imag
and have found that the best correlation with subjec
tests is achieved when the frequency response is ch
to be lowpass instead of bandpass. We take a sim
approach, but also incorporate the Lab color metric to
account for nonlinear visual effects.

Figure 7 shows a block diagram of our error metr
First, the halftoned and the original image are tra
formed from RGB to Yy,cx,cz coordinates. Both image
are then passed through a set of lowpass modula
transfer functions, which model the contrast sensitiv
of the human observer toward luminance and chro
nance. The outputs of these filters are converted to Lab
coordinates and the difference signals between the h
tone and original are calculated. Finally, the energy
each component of the difference signal is determin
Before combining the three values of ∆L2, ∆a2, and ∆b2

to a ∆E related quantity, we examine the performance
our algorithm in the three components L,a,b separately.

Figure 7. Block diagram of the visually weighted error m
ric: T1, T2 denote the transformations from R,G,B to Yy,cx,cz

and from Yy,cx,cz to L,a,b.
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Note that the linear filtering operation is perform
before the transformation to the Lab coordinates. This
order of operations is critical, because the perceived c
will be the average of the halftoned colors in a line
coordinate system. If the nonlinear transformation w
performed first, the model would inaccurately pred
the perceived color of the halftoned image.

The spatial filters used in luminance and chrom
nance are based on visual model described by Sulli
Ray, Miller, and Pios22,23 and data obtained by Mullen.24

Both the luminance and the chrominance model ar
the form

W f
f f f f

f f
c c

c

( ˜ )
exp{ ( ˜ )}

,= − − ≥
<






α

1

where the decay rates a and the cutoffs fc are estimated
from Mullen’s data. For the luminance model, we det
mined α = 0.4385 deg/cycle and fc = 2.2610 cycles/deg
and for the chrominance model we obtained α = 0.1761
deg/cycle and fc = 0.2048 cycles/deg. Furthermore, f̃  is
the weighted magnitude of the frequency vector f = (f1,f2)
where the weighting has an angular dependence as
plied by Sullivan,22

˜ ( )

( )
,

/

f
f f

s
= +1

2
2
2 1 2

Θ

where
s(Θ) = 0.15 cos(4Θ) + 0.85,

and Θ is defined as

Θ = arctan 
f

f
1

2






.

Thus, the model is also a function of the viewi
angle and decreases faster for diagonal frequencie
account for reduced sensitivity to luminance change
diagonal directions.

5 Experimental Results

The marginal distributions are obtained by numeri
integration of pLab(L,a,b) with respect to a and b. Figure
8 shows a histogram of this color distribution in the (L,a)
plane for a display with SMPTE RGB primaries and
D65 white point. Bright areas correspond to high pro
ability, while the dark regions along the boundaries
the gamut reflect low probability. The white dots in F
8 indicate the positions of the quantization levels p
jected into the (L,a) plane and the white lines show th
boundaries between quantization cells. Note that sev
quantization levels are shown for most of the bound
quantization cells. This shows the effect of expand
the range of the color map as described in Sec. 2
Using a weighting factor of w = 8.0 for the error metric
we assign 12 quantization levels to luminance, 57 lev
to the chrominance component a, and 245 colors to the
entire palette. Adding perfect black and perfect white
the palette increases the palette size to 247 colors.
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Figure 8. Histogram of the marginal color distribution in th
(L,a) plane, where L increases from left to right and a increa
from top to bottom. Bright areas indicate high probability a
dark regions reflect low probability.

Figure 9. Histogram of the marginal color distribution in th
(Yy,cx) plane, where Yy increases from left to right and cx in-
creases from top to bottom. The Yy axis is magnified by a fac
tor of 8.

Figure 9 illustrates the transformation of the co
map and the histogram to the new Yy,cx,cz coordinate sys-
tem, where the Yy,cx plane is shown. Note that the s
quential structure of the color palette is maintained a
the transformation.
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Figure 10. Range of color distribution in the (L, a) plane 
the image “Picnic.”
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Figure 10 shows the range of colors in the (L,a)
plane, which occur in the image “Picnic.” Light gra
areas indicate colors that are present in the image.
white lines and dots again indicate the quantization 
boundaries and the palette colors. For each quantiza
region, we only show the one palette color that is close
the gamut boundary. Note how the colors of this ima
extend almost to the edges of the projected gamut. Altho
the distribution of colors in any one image is rarely u
form, the figure shows the variety of colors that m
occur in one image. This indicates the value of minim
ing the loss in gamut when designing the color map

We compare three algorithms: Floyd-Steinberg w
a separable palette, Floyd-Steinberg with an optimi
palette, and optimized error diffusion with an optimiz
palette. We refer to this last combination as the optimi
algorithm. Because a separable RGB color palette w
linear spacings between quantization levels yields p
results, we used a separable RGB palette with color
located according to a power law with an exponen
3.0. A similar approach was taken by Goertzel and Tho
son in Ref. 9. We assigned eight levels to each of the
and green components, and four levels to the blue c
ponent for a total of 256 colors.

Table 1 shows a measure of perceived error for a
of five test images shown in Fig. 11. The error was m
sured using the procedure described in Sec. 4 and
sumed a normal viewing distance of 45.5 cm (17.9 
and a display resolution of 100 dots/in. We examine
variety of images, including images with very satura
Figure 11. Test images: (a) “Balloon,” (b) “Picnic,” (c) “Uchart,” (d) “Munich,” and (e) “Beach.” (Halftones obtained from
color images.)
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colors such as “Picnic,” images with more pastel co
such as “Beach” and “Balloon,” and test images suc
“Uchart.” Except for the b component in the image “Pic
nic,” the optimized algorithm achieved consistently low
errors in all three components. Column 2 in Tabl
shows the improvement that can be achieved by u
the optimized color palette while retaining the Floy
Steinberg filter coefficients. However, the best ove
performance was achieved when combining the o
mized color palette with optimized filter coefficien
These numerical results corresponded well with our 
jective evaluations of image quality. Table 2 lists val
of ∆E for the three algorithms, which are obtained
adding the three quantities of ∆L2, ∆a2, ∆b2 for each im-
age. In this case, the optimized error diffusion toge
s
s

r
1
g

l
i-

b-
s

r

with an optimized color palette consistently produ
the lowest errors.

Figure 12 shows the original “Balloon” image, t
Floyd-Steinberg halftone with RGB palette, Floy
Steinberg algorithm with optimized palette, and op
mized error diffusion with optimized palette. Given t
2:1 zoom of the figures and the assumed viewing 
tance and resolution, these images are designed 
viewed at 7.0 times their height. The range of color
this image and the numerical results for our error me
seem to be typical for the majority of images we wor
with. Note that the optimized algorithm breaks up c
tours and patterns that are typical artifacts of the Flo
Steinberg algorithm. These effects can be most cle
seen in the slowly varying colors of the different b
alette,
es ob-
Figure 12. Comparison of 2.1 zoom of (a) original “Balloon” image, (b) Floyd-Steinberg algorithm with separable RGB p
(c) Floyd-Steinberg algorithm with optimized palette, and (d) optimized error diffusion with optimized palette. (Halfton
tained from color images.)
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loons. Note, for example, how contouring effects in 
balloon on the left of the girl’s face are broken up wh
using the fully optimized algorithm.

Figure 13 shows the original “Picnic” image, t
Floyd-Steinberg halftone with RGB palette, Floy
Steinberg algorithm with optimized palette, and op
mized error diffusion with optimized palette. Simil
effects may be seen in this image. For instance, exa
ing the texture in the tree on the right side of the ima
it can be seen that the optimized algorithm renders
tails with more accuracy than the old method. Howe
the improvement in this image was the least noticea
and the numerical results represent our worse-case
formance.

Table 1. Estimates of perceived error of halftone images in
L,a,b. The optimized error diffusion algorithm with an
optimized universal palette produced the lowest errors in
almost every case.

Image:   Floyd-Steinberg   Floyd-Steinberg   Opt.ED
      RGB Palette        Opt. Palette Opt. Pale

Balloon ∆L2 0.3176 0.1239   0.0872
∆a2 0.1203 0.0772   0.0510
∆b2 0.7894 0.3310   0.2940

Beach ∆L2 0.3584 0.1191   0.0740
∆a2 0.1064 0.0238   0.0116
∆b2 0.3889 0.0524   0.0357

Munich ∆L2 0.3190 0.1356   0.0968
∆a2 0.0662 0.0428   0.0191
∆b2 0.1092 0.0300   0.0168

Picnic ∆L2 0.4016 0.2680   0.1989
∆a2 0.1675 0.1726   0.1477
∆b2 0.4257 0.4031   0.4514

Uchart ∆L2 0.3298 0.2037   0.1535
∆a2 0.1247 0.0751   0.0355
∆b2 0.6661 0.3668   0.2614

Table 2. Estimates of perceived error of halftone images in
∆E2. Here the optimized error diffusion algorithm with an
optimized universal palette yielded consistently the lowes
errors.

Floyd-Steinberg Floyd-Steinberg    Opt. ED
Image:   RGB Palette    Opt. Palette Opt. Palette

         ∆E2          ∆E2        ∆E2

Balloon        1.2273       0.5321     0.4322
Beach        0.8537       0.1953     0.1213
Munich        0.4944       0.2084     0.1327
Picnic        0.9948       0.8437     0.7980
Uchart        1.1206       0.6456     0.4504

In a few image areas, for instance in the blue 
area of the “Picnic” image, the optimized algorith
seems to generate slightly more visible texture. We th
102—Recent Progress in Digital Halftoning II
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that this effect is our trade-off for achieving an overa
performance improvement. The predominantly diagon
orientation of the texture may be due to the angle d
pendency of the human visual model, which was used
design our optimized error diffusion filter.

6 Conclusion

We examined the design of a universal color palette in
visually uniform color space. The palette is generat
using a new vector quantization method known as SS
The SSQ approach reduces computation by allowing V
to be performed with a series of scalar quantizers. T
resulting color palette was then combined with a prev
ously developed multilevel error diffusion algorithm to
give the best overall result.

To evaluate the quality of the displayed images, w
developed a visually weighted error metric that uses mo
els for human contrast sensitivity toward luminance a
chrominance together with a nonlinear transformatio
of the color space. The measurement of this error met
for a variety of images substantiated our subjective co
clusions that the optimized palette improved the di
played image quality.
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